Special Issue: Next Generation DNA Sequencing
نویسنده
چکیده
Next Generation Sequencing (NGS) refers to technologies that do not rely on traditional dideoxy-nucleotide (Sanger) sequencing where labeled DNA fragments are physically resolved by electrophoresis. These new technologies rely on different strategies, but essentially all of them make use of real-time data collection of a base level incorporation event across a massive number of reactions (on the order of millions versus 96 for capillary electrophoresis for instance). The major commercial NGS platforms available to researchers are the 454 Genome Sequencer (Roche), Illumina (formerly Solexa) Genome analyzer, the SOLiD system (Applied Biosystems/Life Technologies) and the Heliscope (Helicos Corporation). The techniques and different strategies utilized by these platforms are reviewed in a number of the papers in this special issue. These technologies are enabling new applications that take advantage of the massive data produced by this next generation of sequencing instruments. In this special issue, nine papers review and demonstrate the utility and potential of next generation sequencing. One of the biggest consequences with NGS technologies is how to deal with all of the data produced by these platforms. Magi et al. [1] review the software tools available for the multiple functions needed to process and interpret the huge amounts of data produced by these instruments. Sequence alignment to a reference, polymorphism detection, de novo assembly and visualization software are covered in this paper. Knudsen and colleagues [2] introduce a computer simulator that utilizes real and simulated reads to assess the effects of different factors and strategies for utilizing NGS to perform de novo assemblies. This is presently a particular challenge for the generally short (sometimes unpaired) reads produced by NGS Technologies. Another review article [3] on bioinformatic issues with NGS data focuses on statistical methods for analysis of Chip-Seq data as well as RNA data generated by these methods. NGS platforms are particularly suited to the use of ChIP-Seq methods as an alternative to ChIP-ChIP methods for identification of transcription factor binding sites.
منابع مشابه
I-37: Establishing High Resolution Genomic Profiles of Single Cells Using Microarray and Next-Generation Sequencing Technologies
The nature and pace of genome mutation is largely unknown. Standard methods to investigate DNA-mutation rely on arraying or sequencing DNA from a population of cells, hence the genetic composition of individual cells is lost and de novo mutation in cell(s) is concealed within the bulk signal. We developed methods based on (SNP-) arraying and next-generation sequencing of single-cell whole-genom...
متن کاملStrategies and Clinical Applications of Next Generation Sequencing
Abstract DNA sequencing is one of the great valuable techniques in molecular biology, which can be used to detect the sequence of nucleotides in a DNA fragment. The high-throughput sequencing known as Next Generation Sequencing (NGS) revolutionized genomic research and molecular biology; therefore, the whole human genome can be sequenced with a low cost in several days. NGS technology is simi...
متن کاملStrategies and Clinical Applications of Next Generation Sequencing
Abstract DNA sequencing is one of the great valuable techniques in molecular biology, which can be used to detect the sequence of nucleotides in a DNA fragment. The high-throughput sequencing known as Next Generation Sequencing (NGS) revolutionized genomic research and molecular biology; therefore, the whole human genome can be sequenced with a low cost in several days. NGS technology is simi...
متن کاملNext Generation Sequencing and its Application in the Study of Microbiome in Plant Diseases Suppressive Soils
Progress in next-generation sequencing has played a significant role in ecological studies of microbial populations. These advances have led to a rapid evaluation in metagenomics studies (analysis of DNA of microbial communities without the need to culture). Many statistical and computational tools and metagenomics databases have led to the discovery of huge amounts of data. In this research, i...
متن کاملNext-Generation Sequencing Reveals One Novel Missense Mutation in COL1A2 Gene in an Iranian Family with Osteogenesis imperfecta
Background: Osteogenesis imperfecta (OI) is a clinically and genetically heterogeneous disorder characterized by bone loss and bone fragility. The aim of this study was to investigate the variants of three genes involved in the pathogenesis of OI. Methods: Molecular genetic analyses were performed for COL1A1, COL1A2, and CRTAP genes in an Iranian family with OI. The DNA samples were analyzed by...
متن کامل